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Abstract

Population-wide increase in life expectancy is a source of aggregate risk. Longevity-linked

securities are a natural instrument to reallocate it. This paper extends the standard Camp-

bell and Viceira (2005) strategic asset allocation model by including a longevity-linked

investment possibility. Model estimation, based on prices for standardized annuities pub-

licly offered by United States insurance companies, shows that aggregate shocks to survival

probabilities are predictors for long-term returns of the longevity-linked securities, and re-

veals an unexpected predictability pattern. Valuation of longevity risk premium confirms

that longevity-linked securities offer inexpensive funding opportunities to asset managers.
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I. Introduction

Four hours a day. This is by how much the expected lifetime for an individual aged

sixty-five has been increasing over the last fifty years.1 This phenomenon highlights an

important source of risk: longevity risk. Broadly speaking, longevity risk is any potential

risk attached to the increasing life expectancy of pensioners and policyholders, which may

eventually translate into higher than anticipated pay-out ratios for many pension funds and

insurance companies. Longevity-linked securities are instruments designed to reduce the

impact of undiversifiable longevity risk on public and private balance sheets. While over the

counter transactions of longevity-linked assets and liabilities are nowadays a consolidated

industry practice,2 a fully-fledged liquid market for longevity risk transfer is still missing

and little is known about the impact of longevity risk on the financial investors’ risk-return

tradeoff.

This paper extends the multivariate strategic asset allocation framework of Campbell

and Viceira (2005) to produce a quantitative assessment of the impact of longevity risk on

the term structure of the Markowitz (1952) risk-return trade-off and on optimal investment

allocations. More precisely, Campbell and Viceira (2005) estimate a vector autoregressive

(VAR) model including the returns on U.S. stocks, treasury bonds and bills and a set of

associated predictors; namely, the dividend-price ratio, the spread between long-term and

short-term bonds and the nominal T-bill yield. In this paper, the VAR is extended to

include the excess return of a synthetic financial security indexed to longevity risk annuity-

1Life expectancy at age 65 in OECD (Organization for Economic Cooperation and Development) coun-

tries has increased from about 13 years to about 20 years in the last 42 years.

2For a recent review on the market practice see Blake, Cairns, Coughlan and Dowd (2013).
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linked security (ALS) and an aggregate longevity predictor. Although the return of the

longevity-linked security is not observable, it can be estimated using the observations of log-

price changes for standardized annuities offered and publicly reported by North American

insurance companies. The aggregate longevity shock is obtained from the Lee and Carter

(1992) stochastic mortality model.

Our model estimation shows that the aggregate longevity shock is not spanned by the

other variables in the VAR and that realized aggregate longevity is mean-reverting, so

that it can be used to forecast longevity growth. Predictability impacts the term structure

of risk that describes the dependence of the risk-return tradeoff on the investor’s holding

period.

Estimates from the VAR model are then used to compute optimal portfolios for investors

adopting a buy-and-hold strategy with a holding period between one and forty years. The

model predicted asset allocations show that investors with a long horizon (longer than 12

years) want to take a long position in the ALS security, since it has low risk and diver-

sification properties. On the other hand, investors with a shorter horizon want to take

a short position in the ALS security, using the proceeds to fund equity and bond invest-

ments. Finally, we provide a quantitative assessment of the longevity risk compensation.

Its computation shows that for short- and medium-term investment horizons, the optimal

(zero investment) longevity risk hedging portfolio is formed by a long position in traded

financial assets financed by a short position in the synthetic longevity risk security. Evalu-

ation of the Sharpe ratios for portfolios corresponding to different hedging policies produce

reasonable risk compensation estimates. When hedging instruments are restricted to con-

ventional fixed income securities, then risk compensation is in line with those used in the
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insurance industry practice; when allocations are left unconstrained and hedges may in-

clude equity, then large Sharpe ratio estimates confirm that longevity-linked securities offer

a good source of cheap leverage to risk-seeking asset managers. Quite remarkably the opti-

mal portfolios finance equity investment shorting longevity-linked liabilities. Interestingly

Frazzini, Kabiller and Pedersen (2013) estimate that 36% of Berkshire Hathaway’s liabili-

ties consist of insurance float, thus suggesting that strategies consistent with the indication

of our empirical model are already being implemented.

Our precise description of the term structure of longevity risk-return trade-offs illus-

trates that the creation of liquid longevity-linked securities with a stable demand critically

hinges on an efficient maturity transformation activity. In fact, only in this case it is possi-

ble to diversify longevity risks among investors with shorter holding periods, who are averse

to liquidity and credit risk of long-duration bonds.

The rest of the paper is organized as follows: Section II places the contribution in the

context of existing actuarial and financial literature. Section III describes the construc-

tion of the aggregate longevity risk state variable and the estimation of an extended VAR

that includes the aggregate longevity risk shock and annuity price changes. Section IV de-

scribes the optimal allocation for investors who have the opportunity to invest in a synthetic

longevity-linked security with short duration and discusses the normative implications for

the design of an efficient market for longevity risk transfer. Section V defines an hedging

portfolio for aggregate longevity risk and quantifies longevity risk compensation as mea-

sured by the Sharpe ratio of this hedging portfolio. Section VI concludes. Details about

the estimation of the Lee-Carter model and about the derivation of the VAR specification

are reported in the Online Appendix.
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II. Related Literature

Long horizon mean-variance allocations share many properties with the strategic asset

allocations chosen by intertemporal utility maximizing investors, but they are easier to

compute (Campbell and Viceira (2005)). In this respect, our VAR is very close in spirit

to the Campbell, Chan and Viceira (2003) strategic asset allocation model. Our exten-

sion builds on Cocco and Gomes (2012), who analyze the portfolio choice problem of an

agent investing in financial assets whose returns are correlated with the shocks to survival

probabilities and can in turn be used to buy insurance against aggregate longevity risk.

In particular, the authors study both the portfolio allocation between these bonds and

risk-free assets and how their demand changes over the life-cycle depending on individual

characteristics. Differently from these authors, we assume a point of view closer to the

one of a reinsurance (representative) investor assuming that the idiosyncratic life cycle

component is optimally managed within the insurance sector and does not play any role

in the analysis. Allocation in longevity-linked securities is freely determined by an uncon-

strained reinsurance investor who optimizes his allocation conditionally on the risk-return

performance of tradable investment opportunities.

In this respect, it is important to remark that standardized retail insurance annuity

contracts that are used to estimate the VAR differ significantly from tradable financial se-

curities, in that they are individual-specific and their purchase is irreversible. The approach

pursued in this paper overcomes this problem, proving (see Section 3) that annuity log-price

changes can be considered as the returns of a tradable synthetic security with a payoff that

depends on aggregate longevity risk - as measured by the (ideally publicly available) index

of our construction - and thus offers a stylized example of a longevity-linked security.
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The distinction between annuities and these synthetic longevity-linked securities is par-

ticularly important as the valuations of financial and actuarial contracts differ significantly,

as previously highlighted in the actuarial literature. From an empirical point of view

Mitchell, Poterba, Warshawsky and Brown (1999), Poterba (2001), Horneff, Mitchell and

Stamos (2009) among others, study the welfare benefits from purchasing annuities and

discuss the well-known under-annuitization puzzle. On the theoretical side, on the other

hand, the actuarially fair pricing of annuities is a well-known, investigated problem (see

e.g. Pitacco, Denuit, Haberman and Olivieri (2009) and Milevsky (2006) and references

therein).

Longevity risk can be decomposed in two underlying components: an idiosyncratic

random variation risk and a common trend risk. Random variation risk is the risk that

mortality rates differ from their expected outcome as a result of chance or individual-specific

characteristics. Trend risk, on the other hand, is the risk that unanticipated changes in

lifestyle behavior or medical advances significantly improve longevity for the population as

a whole. Idiosyncratic risk is dealt with by pooling a large number of different individuals.

Trend risk, similarly to any macroeconomic risk, is, on the other hand, an “aggregate

risk” that cannot be diversified away by pooling. One path toward the reduction of the

impact of longevity risk on the balance sheets of public and private insurance providers

passes through the creation of a market for longevity-linked securities to enhance risk-

sharing among different categories of financial investors and insurance sellers and to produce

an efficient valuation of the cost of longevity risk3. In addition to idiosyncratic random

3An early proposal regarding design of financial instruments for hedging longevity risk is done in Blake

and Burrows (2001).
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variation risk and a common trend risk, Biffis, Denuit and Devolder (2010) point out a third

source of risk affecting insurance securities: basis risk, i.e. the risk that the population

from which the survival probabilities were estimated differs from the insurer’s cohort. This

paper analyzes only the aggregate mortality risk component; the one that is not removable

through conventional actuarial policy actions (e.g. pooling, screening of subscribers) and

is priced by rational agents.

The point of contact between the valuation of an annuity and that of the longevity-

linked security employed in this paper is a “fair pricing” argument of widespread use in

actuarial science (Milevsky (2006)): rational agents decide whether to annuitize or to defer

the purchase of the annuity for a given period of time by comparing the return offered by

the annuity with the potential return from self-annuitization during the deferral period. As

the efficiency of self-annuitization depends on the alternative financial investments available

in the market, it is reasonable to expect that an annuity contract will offer a return that

is both competitive as compared to that of similar financial securities ans is inclusive of a

specific mortality credit component. In fact, the main goal for this modelling procedure is

a precise quantification of the potential benefits that an integrated market for (aggregate)

longevity risk-sharing would offer to investors and insurance providers.

The present paper assumes that individual specific risk is optimally diversified within

the insurance sector by risk-pooling and that reinsurance business is carried out by financial

investors who are available to trade aggregate longevity risk in order to optimize the risk-

return tradeoff of their portfolio. In this respect, the present approach is complementary

to the analysis of Koijen and Yogo (2013) who focus on the valuation of risks and benefits

arising from concentration of shadow, off balance-sheet, reinsurance activities carried out
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by insurance companies.

An approach similar to ours for the pricing of longevity risk is followed by Lin and

Cox (2005) and Lin and Cox (2008), who apply the 1-factor and 2-factor Wang transform

to estimate longevity premia from annuity prices. Milevsky, Promislow and Young (2006)

and Bayraktar, Milevsky, Promislow and Young (2009) develop a theory for pricing undi-

versifiable mortality risk in an incomplete market. They postulate that an issuer of a life

contingency requires compensation for this risk according to a pre-specified instantaneous

Sharpe ratio. Within the model proposed in the paper, the incompleteness generated by

demographic uncertainty is accounted for by including an additional state variable which

is extracted from the Lee and Carter (1992) model for stochastic mortality. Previous at-

tempts to quantify the impact of longevity risk on market prices, like Friedberg and Webb

(2007), who apply the Capital Asset Pricing Model (CAPM) and the Consumption Capital

Asset Pricing Model (CCAPM) to quantify risk premia for potential investors in longevity

bonds, produce very low estimates of such a premium. The authors acknowledge that there

is likely to exist a “mortality premium puzzle” similar to the well-known “equity premium

puzzle” (Mehra and Prescott (1985)) driving higher mortality risk premia in the data than

those economic models would suggest.

III. Risk and Returns in a VAR Model for Financial Securities and Annuity

Prices

Our empirical strategy follows the approach to the optimal portfolio choice problem

under return predictability proposed by Campbell et al. (2003) and Campbell and Viceira

(2005). As a longevity-linked security is included in the investment opportunity set, an
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appropriate associated predictor is built from the estimation of a stochastic mortality model

and included in the VAR. We therefore first illustrate how annuity valuation implies that the

unexpected generalized mortality innovation as from the popular Lee and Carter (1992)

model can be used as a predictor of the return of a longevity-linked security. We then

propose a VAR model of the joint dynamics of the returns on stocks, bills, bonds, longevity-

linked securities and their predictors.

A. A Reduced-Form Model for Annuity Valuation

Our estimate of the longevity risk-return trade-off is based on the historical time series

of observed prices for standardized annuity contracts offered by insurance companies to

voluntary individual annuitants. By “standardized” annuities we mean single premium

(involving a one-time investment), immediate (commencing regular income payments one

period after the premium has been paid), single life (guaranteeing to make payments only

to a single beneficiary until her death) and fixed (providing fixed payments) annuities.

It is important to remark that annuity contracts significantly differ from tradable finan-

cial contracts, as they are individual-specific and their purchase is irreversible. Moreover,

insurance companies cannot liquidate the subscribers and annuities cannot be replicated

or sold short.4 Finally, informational asymmetry between the subscriber and the insurance

company is known to affect annuity pricing: it is documented that voluntary subscribers

of life annuities live longer than average population.5

4An important element distinguishing insurance companies from several other financial intermediaries

is the lack of a secondary market where the contracts written by insurance companies may be traded. The

holder cannot sell her insurance policy to a third final investor, albeit, in recent years, secondary markets

for some insurance contracts have developed.
5The adverse selection problem in annuity pricing has been discussed, among others, by Mitchell et al.
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Despite these differences, it is possible to set bounds on the returns from annuities using

the information on the returns offered from alternative financial investment opportunities

using a simple argument. Assume that a rational agent of age x at time t faces the

alternative between immediate annuitization at price Px,t or a deferral of the entry decision

by one year, buying the annuity at time t+ 1 and age x+ 1 at a price Px+1,t+1. In order for

the agent to opt for immediate annuitization, the expected return provided by the annuity

must be at least as large as the one she would expect from a financial investment with a

similar risk-return profile plus a mortality credit, the extra return required by the annuitant

as a compensation for the exposure to the (actuarial) risk of a premature death between

age x and age x + 1. If this is not the case, the agent would prefer self-annuitization, i.e.

deferral of the annuitization anticipated by a short-term financial investment of the pension

savings. To precisely quantify such risk, let qx,t denote the mortality rate for individuals of

age x in year t, i.e. the probability that a person aged x and alive at the beginning of year

t dies before the end of the year. We define by sx+i,t+i the probability to be alive in year

t+ i, of age x+ i, conditional on being alive at age x in year t, so that:6

sx,t = 1,

sx+i,t+i = sx+i−1,t+i[1− qx+i,t+i], i = 1, . . . ,∞.

Life expectancy for a person aged x at time t is defined as lex,t =
∞
Σ
i=1
sx+i,t+i. Survival

(1999) and Finkelstein and Poterba (2004). More recently, the role of informational asymmetries in

longevity markets has been analyzed in Biffis and Blake (2010).
6The common actuarial notation for the survival probability sx+i,t+i would be ipx,t. It is modified in

order to keep using the common financial convention where p indicates the logarithmic price of a risky

security, e.g. p− d will indicate the price-dividend ratio.
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probabilities tend to zero as time increases, given that mortality rates qx,t increase with age

x, and the probability of death between x and age x+1 is then quantified by 1−sx+1,t+1/sx,t.

Assuming that annuities are offered to rational agents in a competitive market, prices

set by insurance companies should correspond to the lowest return making the investor in-

different between immediate annuitization or deferral. Given this premise and the previous

definitions, we derive an approximate accounting identity providing an explicit expression

of these contributions.

By definition the one-period holding return for an annuity paying a coupon C in each

period (year) to a person aged x at time t is given by:

RA
t+1 =

(Px+1,t+1 + C)sx+1,t+1

Px,tsx,t
− 1.(1)

Dividing both sides of (1) by
(
1 +RA

t,t+1

)
and multiplying both sides by Px,t/C, we have:

Px,t
C

=
1(

1 +RA
t,t+1

) (sx+1,t+1

sx,t

)(
1 +

Px+1,t+1

C

)
.

Denoting with lowercase letters the natural logarithms of uppercase letters we have:

px,t − c = −rAt+1 + ln

(
sx+1,t+1

sx,t

)
+ ln

(
1 + epx+1,t+1−c

)
.

Finally, taking a Taylor expansion of the last term about the average log price-coupon
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ratio, P
C

= ep−c, we have:

px,t − c ' −rAt+1 + ln

(
sx+1,t+1

sx,t

)
+ ks + ρ (px+1,t+1 − c) ,

where ρ ≡ ep−c

1+ep−c
. Therefore, recalling that:

ln

(
sx+1,t+1

sx,t

)
= ln (1− qx,t) ,

we derive by rearranging that annuity prices can be written as:

px,t = k + (1− ρ) c+ ρ (px+1,t+1)− rAt+1 + ln (1− qx,t) .

Taking the term-by-by-term difference of the valuation equation between time t+ 1 and t,

the value of the coupon (nominal payment is fixed) disappears from the valuation equation,

so that:

∆px,t = ρ (px+1,t+1 − px+1,t)−∆rAt+1 + ∆ ln (1− qx,t) ,(2)

with ∆px,t ≡ px,t − px,t−1.

Consider now the popular Lee and Carter (1992) model for stochastic mortality. This

model has both strong within-sample fitting properties and remarkable out-of-sample pre-

dictive power. Together with the relative ease of its computation, these characteristics have

made it the standard mortality forecasting model among practitioners and academics. The
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model consists of a system of equations for the logarithm of the central death rate m (x, t)

of each age cohort x at time t, and a time-series equation for an unobservable time-varying

mortality index kt, common among all age cohorts. In particular, in terms of the mortality

rate qx,t we have

ln (qx,t) ' − (ax + bxkt + εx,t) ,(3)

kt = c0 + c1kt−1 + et,(4)

εx,t ∼ NID
(
0, σ2

ε

)
, E [et] = 0,

where ax and bx are age-specific constants.7 The error term εx,t captures cross-sectional

errors in the model-based prediction of mortality for different cohorts, while the error term

et captures random fluctuations in the time series of the common factor kt driving mortality

at all ages. This common factor kt evolves over time as an auto-regressive process and the

favorite Lee-Carter specification makes it a unit-root process by setting c1 = 1 while et

is assumed to be a zero mean stationary process. Identification is achieved by imposing

the restrictions
∑

t kt = 0 and
∑

x bx = 1, so that the unobserved mortality index kt is

estimated through Singular Value Decomposition.8

Under the Lee-Carter specification the revision of the mortality credit contribution is

7In the original formulation Lee and Carter assume an exponential affine expression of the central death

rates, while in our framework the exponential affine expression is applied directly to the mortality rates.

The two coincide within the log-linear approximation of the mortality rates evolution that is considered in

the VAR specification. Unreported estimation tests do show that results are essentially unaffected if the

original specification is adopted.
8See Appendix A for a full description of the adopted identification and estimation strategy.
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linear in the innovation to the unobserved common factor component kt. In fact,

1− qx,t = 1− exp (− [ax + bxkt + εx,t]) , kt = c0 + kt−1 + et,

so that for small variations in mortality rates:

ln (1− qx,t)− ln (1− qx,t−1) ' ∆qx,t = − [bxet + εx,t − εx,t−1] .

A similar measure has already been introduced and discussed in Friedberg and Webb (2007).

Assuming that agents will compensate only aggregate risk, the priced contribution to mor-

tality credit is given by et, and we can re-write (2) as

∆px,t = ρ (∆px+1,t+1)−∆rAt+1 + ∆qx,t.(5)

Solving this relation forward up to period t + m and taking expectations given the

information set available at time t, we have:

∆px,t ' −
m∑
j=0

ρjEt∆r
A
t+1+j +

m∑
j=0

ρjEt∆qx+j,t+j,

which shows that the annuity log price change is determined by future expectations on

changes ∆rAt+k in the annuitant holding period returns and on revisions in trend longevity

factor ∆qx,t.

It becomes useful at this point to observe that the annuity log price change can be
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interpreted as the return on a longevity-linked security whose payoff is indexed to the

log price variation ∆px,t of annuity prices sold each year t to annuitants in the cohort x.

By convention we define Annuity-Linked Security (ALS hereafter) as a reference synthetic

security indexed on annuity prices based on the cohort of 65-year-old US annuitants. A long

position in the ALS corresponds to an (nontraded) tontine insurance in which contracts

are terminated and then possibly renegotiated every year.9 A short position in the ALS

allows the investor to sell protection on the longevity risk of the cohort of 65-year-old US

annuitants. Then the last equation identifies a relation between the return on ALS, the

innovations in the common mortality factor in the Lee-Carter model and the annuitant

holding period returns.

B. A Model for Stochastic Mortality and its Performance on the U.S. Data

We apply the Lee and Carter (1992) model to estimate shocks to mortality for cohorts

in the age interval between 65 and 110. We restrict the estimation to the cohorts of the

retired population for several reasons. First, the active rebalancing of the contributions is

not feasible for these cohorts, as they typically consist of people who have left the accumu-

lation phase and entered the decumulation phase. Hence, reallocation via securitization or

reinsurance is the only viable strategy that insurance companies can pursue to hedge the

associated longevity risk. Second, the largest publicly available empirical data sets on annu-

ity prices apply to annuitants belonging to these cohorts. Third, limiting the specification

to the retired cohorts alleviates some well-known limitations of the Lee-Carter model when

applied to all cohorts (see Lee (2000)). Finally, the Lee-Carter model, being a single-factor

model of mortality, minimizes the number of parameters to be estimated and produces a

9For an actuarial discussion of such synthetic contracts see Milevsky (2006), p. 224.
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parsimonious set of mortality predictors. In fact, the Lee-Carter stochastic mortality model

produces a mortality predictor that fits nicely the log-normal approximation convention-

ally applied to model prices and predictors within the VAR approach. Note, however, that

the approach proposed is fully flexible and we do not see specific obstacles to extend it to

any other (log-linearized) version of stochastic mortality models as, for example, the one

proposed by Blake, Cairns and Dowd (2006). In Appendix A we report evidence on the

performance of the Lee-Carter model in fitting US mortality rates. To derive an observable

counterpart of the priced contribution to mortality credit, we consider an estimation of the

Lee-Carter model restricted to the post-retirement cohorts of individuals aged between 65

and 110. This measure, called qkt, is similar to the one discussed in Friedberg and Webb

(2007), and coincides with the unexpected variation in the survival rate pooled over all

retired cohorts:

qkt '
1

45

110∑
x=65

{ln (1− qx,t)− Et−1 [ln (1− qx,t)]} .

Using the Lee-Carter specification, the observable index qkt+1 can be approximated by:

qkt ' −
1

45

110∑
x=65

(αx + bxkt + εx,t)− (αx + bxEt−1 [kt]) = − 1

45

110∑
x=65

(bxet + εx,t)

and, taking into account the normalization condition
∑110

x=65 bx = 1 we have:

qkt ' −
1

45

110∑
x=65

(bxet + εx,t) = − et
45
− 1

45

110∑
x=65

εx,t.(6)
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The longevity shock qkt describes the time evolution of the unexpected variation in mortal-

ity rates which has a uniform impact across cohorts, and is estimated by applying the Lee

and Carter model only to the retired cohorts. Notice that this shock includes two contri-

butions; the first contribution is proportional to the opposite of the Lee Carter aggregate

mortality shock et, the second one is the sum of the cohort-specific innovations. The fil-

tered innovation qkt is included as a predictor in the vector of autoregressive variables to

account for unexpected trend variation in mortality rates. This variable offers a publicly

available, cohort-independent information which investors can observe and use to quantify

the impact of the variability of aggregate longevity on prices.

Notice that the second contribution accounts for longevity fluctuations that are non-

uniform across cohorts, e.g. an increase of mortality rates in older cohorts compensated by

a reduction of mortality at younger ages. It is interesting to analyze the dynamic proper-

ties of the second contribution. By construction it has zero expectation but, as originally

highlighted by Lee and Carter, εx,t are generally correlated across cohorts and across time.

Importantly, we retain only the testable assumption that this second contribution is sta-

tionary: the only non-stationary component in the evolution of mortality is the common

factor kt.

C. A Reduced VAR Dynamic Model for the Annuity-Linked Security Returns

In this subsection we show that, using the above reduced valuation approach, it is pos-

sible to model the stochastic evolution of ALS returns (log annuity price changes) ∆px,t

using a VAR specification which extends that of Campbell and Viceira (2005) (hereinafter

CV-VAR(1)). Following Barberis (2000), Campbell and Viceira (2002), we describe dy-

namics of asset returns and relevant predictors using a VAR(1) model:
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zMkt
t = ΦMkt

0 + ΦMkt
1 zMkt

t−1 + νMkt
t ,(7)

where

zMkt
t =

[
r0 xMkt

t sMkt
t

]T

is a m × 1 vector, with r0t being the log real return on the asset used as a benchmark

to compute excess returns on all other asset classes, xt being the n × 1 vector of log

excess returns on all other asset classes with respect to to the benchmark, and st being the

(m− n− 1) × 1 vector of returns predictors. The exact specification and its estimation

results are reviewed in online Appendix B.

Although an annuity is not a financial security and cannot be priced accordingly, ra-

tionality of the annuitant forces the (log) holding period return rAt to be comparable (but

for the mortality credit) to the compensation one would receive by investing in a portfolio

of traded financial securities with similar risk and return characteristics while deferring by

one year the annuitization. Hence we claim, and later show empirically, that the financial

component of the return rAt can be replicated using a portfolio of securities whose evolution

is described by the CV-VAR(1) model. Moreover, assuming a stationary evolution for rAt ,

the VAR(1) specification implies that also −
∑m

j=0 ρ
jEt∆r

A
t+1+j is a linear function of the

state variables zMkt
t . This is equivalent to the assumption:

−
m∑
j=0

ρjEt∆r
A
t+1+j = φA0 + φA,Mkt

1 zMkt
t .
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Similarly, the mortality credit component affecting the evolution of ALS price is proxied

by the observed innovations in the longevity trend. For this reason an additional predictor

state variable qkt is introduced and it is assumed that:

m∑
j=0

ρjEt∆qx+j,t+j = φ3qkt.

In conclusion, the standard CV-VAR(1) model can be augmented to include the evolution

of the (65 cohort) annuities’ (log) price growth in excess to the return of the safe asset,

x∆pt := ∆p65,t − rf,t, following the specification:

x∆pt+1 = φA0 + φA,Mkt
1 zMkt

t + φ2x∆pt + φ3qkt + νAt+1,

where νAt+1 is the combination of all shocks in the state variables and idiosyncratic mortality

shocks. Excess returns of the ALS are determined by a combination of market returns,

market return predictors and the aggregate longevity predictor. We now analyze the effect

of extending the traditional portfolio to include excess annuity prices by considering the

following augmented VAR specification:

zt = Φ0 + Φ1zt−1 + νt, νt ∼ N (0,Σν),(8)

where

zt =

[
r0 xMkt

t x∆pt sMkt
t qkt

]T
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and Σν is the (m+ 2) × (m+ 2) variance-covariance matrix of the returns on financial

assets, the annuity prices and their associated predictors.

D. The Dynamics of Returns of U.S. Bonds, Bills, Stocks and Annuities

To evaluate how the inclusion of the ALS excess returns and of a predictor for the change

in their prices modifies the optimal portfolio allocation at different horizons, we compare

the results obtained from the CV-VAR(1) estimation over the yearly sample 1953-2010 (the

most recent update of the human mortality database) to those obtained from our extended

VAR. The first model includes six variables: the ex-post real T-bill rate, the annual excess

returns on stocks, the annual excess returns on long-term (20-year) bonds, the log yield on

a 90-day T-bill, the log dividend-price ratio and the yield spread (defined as the difference

between the 20-year zero-coupon bond yield from the CRSP Fama-Bliss data file - the

longest maturity yield available in the file - and the T-bill rate). The second model is an

eight-variable VAR obtained by adding to the standard CV-VAR(1) the log difference in

the annuity premium minus the risk-free rate (which extends the set of excess returns) and

the aggregate longevity shock (which extends the set of predictors). Table 1 shows sample

statistics for all variables. Our sample, which includes observations up to the most recent

update of mortality data, compares well with the annual sample used in previous studies.

Only the statistics on long-term bond indicate a lower expected return, a result which is

clearly driven by recent trends in monetary policy.

Insert Table 1 about here

Both estimated VARs include constants in each equation. Table 2 shows the results for

the extended VAR including longevity predictor and ALS returns, while the results of the
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original CV-VAR(1) estimation over the yearly sample 1953-2010 and detailed information

on the data used in the estimation are reported in Appendix C. The results from the

standard model are well in line with those reported in Campbell et al. (2003). When the

extended VAR is estimated, no major changes take place in the coefficients attached to

the six financial variables in the original model. For those variables whose explanatory

power is significantly different from zero, the impulse response coefficients are qualitatively

similar and confirm all the stylized properties found in the original estimation: real T-

bill, stock and bond returns are predicted by nominal short rate, dividend-price and term

spread. The longevity shock is persistent and helps to predict the change in annuity prices

(a positive shock to longevity increases the price of annuities). It also has some significance

in predicting excess return on bonds. Although it is not possible to identify the structural

origin of this predictive relation within our reduced partial equilibrium model, it is in

line with some macroeconomic arguments supporting a relation between population age

structure and price fluctuations of long duration safe assets.

Insert Table 2 about here

The two new equations included in the extended VAR describe the evolution of the ag-

gregate longevity shock and the logarithmic yearly change of the annuity price in excess to

the nominal T-bill. The estimated aggregate longevity shock dynamics qkt is substantially

a univariate mean-reverting process with a root of 0.75 and zero expectation (estima-

tion provides a value Et−1 [qkt] = 0.0005), indicating that the information conveyed by

the aggregate longevity shock is not spanned by other variables and that the spread be-

tween expected and realized aggregate longevity is mean-reverting and thus may be used

21



to forecast aggregate longevity growth.

Notice that the persistence of this shock does not contradict the standard Lee-Carter

specification; in fact the usual specification assumed for the trend component kt is a unit

root evolution process. This requires only the first difference of the process to be a sta-

tionary process, which is consistent with our findings. In addition, as shown in Figure 1, a

closer analysis of the contributions to qkt highlights that mean reversion is almost entirely

driven by the second contribution to qkt in eq.(6), i.e. by the sum of cohort specific shocks.

These fluctuations measure the time t deviation from zero of the cohort-specific shocks

sample mean; the longer the persistence of this process, the more slowly they return to

the mean. Notice that from a demographic point of view these fluctuations measure also

the deviations from the original expected distribution of the cohort specific mortality rates

which, especially at older ages, are driven by health and life quality improvements. As

should be expected, we verify in sub-samples that this mean reversion is slowly increasing

as the time span of the sample increases.

Insert Figure 1 about here

The aggregate longevity shock is a significant predictor for x∆pt+1 (the ALS return in

excess to the T-Bill rate), which is also significantly predicted by past real and nominal

T-bill rates and the excess returns on long-term bonds. Annuity price growth in excess

of the T-bill rate have a positive loading on the real rate and a negative loading on the

nominal T-bill rate, a negative loading on long-term excess bond rate returns and a positive

dependence on the aggregate longevity shock. In Figure 2 the time series of historical (real)

logarithmic price changes is compared to the replication as operated by the VAR dynamic

22



model aggregating the information of financial securities returns and of the forecasting

variables, including the aggregate longevity shock.

Insert Figure 2 about here

The good fit indicates that the VAR estimation produces a realistic “reduced-form”

pricing model for the annuity contract offered by insurance companies to annuitants. Note

that our approach concentrates only on aggregate longevity risk and does not account for

the actuarial components of insurance premia. These have to be included to hedge basis

risks or adverse selection effects, which would in turn require a discussion of the specific

characteristics of annuitants.

IV. The Impact of Longevity Securitization on Optimal Allocations

The possibility to trade longevity-linked securities extends the set of investment oppor-

tunities and offers a new diversification dimension. As in Campbell and Viceira (2005),

optimal portfolios are computed for investors adopting a buy-and-hold strategy with hold-

ing period between 1 and 40 years. The set of investment opportunities is composed by

T-bills, equity, a rolling strategy in a long-term bond and the ALS. This security grants to

its holder a yearly return equal to ∆pr65,t the variation of the mean (logarithmic) price

observed on the US insurance market for a standardized annuity contract. The estimation

indicates that, as expected, the return from this contract will rise if aggregate longevity

is rising and will decrease if aggregate mortality increases. As in Campbell and Viceira

(2005), the VAR is used to derive the term structure of risk while expected returns are

estimated unconditionally: the VAR framework is not exploited to derive a time-varying
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asset allocation that depends on conditional first and second moments. From this perspec-

tive, all that is required in order to derive the same term structure of risk over time is the

structural stability in the relation between predictors and returns. In practice, we have

checked that the term structure of risk does not vary by comparing our full sample results

with those obtained by reducing the sample via the omission of the first twenty years10.

Note however, that optimal allocations do vary across the full and the limited sample as a

consequence of the fact that unconditional mean of returns are different in the two periods.

The VAR is never used to forecast first moments; therefore, the difference between within-

sample performance and out-of-sample performance will not have a significant impact on

our VAR-based portfolio allocation. The results of a more extended robustness check are

reported in Appendix C.

A term structure of conditional volatilities at different horizons can be naturally derived

from the estimation of our VAR process for returns and predictors.

Insert Figure 3 about here

In Figure 3, we compare the term structures of the standard deviation of the ALS

and of traditional financial securities. Notice that the annualized volatility increases with

the holding period, the clear sign of the long-term nature of the risks underlying annuity

prices. For holding periods shorter than 10 years, ALS is less risky than equity and (rolling)

bond investments, while on longer horizons its risk exceeds that of other securities: the

irreversible nature of annuitization implies that, from a pure financial point of view, this

contract has a risk-return profile similar to the one by a buy-and-hold strategy on a long-

term bond. ALS price fluctuations reflect changes in the long-run expectations regarding

10Results of this robustness exercise are available upon request.
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inflation and longevity trends. A small persistent change to future expectations can have a

relevant impact on the current evaluation of the annuity contract. Note that an ALS is not

the contract that an insurance company would like to use to reinsure aggregate longevity

risk. In fact, an insurance company with a portfolio of annuities under management would

be willing to reinsure only aggregate longevity risk but would prefer to retain the remu-

nerative core business of the insurance industry through the diversification of the residual

risk by pooling together annuitants of all ages and different lifestyles.

Figure 4 plots the correlations among the set of financial securities and ALS as a function

of the holding period.

Insert Figure 4 about here

These correlations have a sharp decline with the holding period. These correlations, and

more in general the term structure of assets’ risk and returns, determine the weight that

each asset receives in the portfolio allocation of an investor with mean-variance preferences

for any given horizon. To have a sense of how this portfolio allocation changes by including

the possibility to invest in the ALS, we again follow Campbell and Viceira (2005) and

first consider the generalized absolute minimum variance portfolio (henceforth GMV), the

portfolio with the lowest variance on the mean-variance efficient frontier. For each holding

period this portfolio is described in Figure 5.

Insert Figure 5 about here

Figure 5 shows that the investor overweights the allocation in the T-bill to buy a

combination of ALS and long-term bond independently of the investment horizon. This

combination is a long position in the bond and a short one in the ALS when the holding
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period is below 10 years, while for longer horizons the two positions are switched. Hence,

over periods of time less than a decade, risk exposure is minimized by selling protection

to longevity while the same investment becomes speculative over longer holding periods.

As a consequence, it is expected that demand for longevity exposure and the liquidity of

longevity-linked securities can be considerably increased by offering products with short

durations.

Figure 6 compares the term structure of risk of the extended GMV with that of the

“Campbell-Viceira” GMV and that of a T-bill. Inclusion of the ALS reduces risk for

all holding periods with the exception of the interval between 10 and 15 years, where the

optimal allocation in the ALS shifts from negative to positive values and the rolling position

in long-term bonds shifts from positive to negative.

Insert Figure 6 about here

Roughly speaking, the allocation and the risk profile of the GMV confirm that a long

position in aggregate longevity is financially appealing, with low risk and good diversifica-

tion properties, only for an investor with a horizon longer than 12-13 years. This result is

consistent with the hypothesis that annuity prices offer a return that is competitive with

the alternative investments available to the investor: annuities for a 65-year-old investor

have an effective duration of around 12 years (see, for example, Loeys, Panigirtzoglou

and Ribeiro (2007)). Note that the 12-year minimum variance portfolio corresponds to an

allocation in the ALS that is essentially zero.

Based on these observations, it is possible to conclude that the creation of short-duration

(less than 10 years) longevity-linked securities is the key step for an efficient securitization

of longevity risk. These securities offer a stochastic liability that can efficiently be used
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to finance investments with good diversification properties. The risk-return analysis of the

ALS shows that securitization of longevity, which is a long run risk in the sense of carrying

a small but persistent component, does not necessarily require the use of long-duration

securities. On the contrary, upon a precise quantification of the term structure of longevity

risk exposures, a more efficient management of maturity transformation can be realized

using structured securities, as, for example, swap contracts. These findings suggest that

the problems that affected early longevity-indexed security issuances were determined by

long durations. For these securities liquidity and credit risk components were so large as

to overwhelm the effect of longevity risk both for pricing and hedging.

As a second illustration of the optimal mean-variance allocations including a position

in the short-term ALS, in Figure 7 we plot the optimal allocations for a portfolio with an

expected return of 10% as a function of the holding period returns. As expected, the ALS

short position is used to leverage a portfolio of T-bills, equity and long-term bonds.

Insert Figure 7 about here

V. Longevity Securitization and Intertemporal Hedging of the Aggregate Longevity

Risk

The results from the estimation of the extended VAR provide evidence of a significant

response of annuity prices to variations in aggregate longevity rates. Quoted annuity prices

are expected to include a compensation for the insurance company to bear a risk expo-

sure for the unexpected rise of the undiversifiable longevity risk component. Following

the conventional intertemporal CAPM (ICAPM) interpretation (Merton (1973)), expected

utility maximizers attempt to hedge the stochastic changes of their investment opportunity
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created by unexpected aggregate longevity shocks. The hedging portfolio is determined by

an allocation in traded securities whose return is maximally correlated with the longevity

shock qkt. This portfolio is determined by the constrained minimization problem:

min
w

V art−1

[
Rqk
t (wt−1)− qkt

]
s.t. : Rqk

t (wt−1) = wt−1 · xt +W0,t−1rtbt

wt−1 = [wxr,t−1, wxb,t−1, wx∆p,t−1] , xt = [xrt, xbt, x∆pt] ,

where xt includes the log excess returns of market securities plus the annuity log price

growth in excess to the T-bill rate, Rqk
t is the return on the replication portfolio and W0,t

is the investor’s wealth at time t.

Recall that the purchase of an annuity is irreversible and payments are done until the

death of a single beneficiary, while x∆pt is the ALS return, the annuity price variation

between time t− 1 and t for the 65-year-old male cohort in excess of the T-bill rate. Hence

the Aggregate Longevity Hedging Portfolio (hereinafter ALHP) is not tradable unless an

Annuity-linked Security paying off the return ∆p65,t on a yearly basis is made available to

investors. This is a benchmark example of the theoretical motivations underpinning the

necessity of longevity securitization.

By construction, the ALHP tracks the aggregate longevity shock qkt, and is therefore

the best available product to reinsure aggregate longevity risk. Note that the efficiency

of the replication increases with the number of investment opportunities exposed to ag-

gregate longevity risk. In practice, the hedging portfolio is determined by performing the

minimization over the set of unconstrained allocations wt = [wxr,t, wxb,t, wx∆p,t], while the

28



position in the short rate is set equal to wrtb,t = W0 − wt·1. Since our VAR model gen-

erates a stationary dynamics, the minimum variance replication portfolio corresponds to

a time-independent allocation w∗t−1 = w. The first order condition, therefore, implies the

solution:

wT = Var [xt]
−1 {Cov [xt, qkt]} , wrtb = W0 −w · 1.

We consider three alternative replication portfolios corresponding to zero initial investment

(W0 = 0) with an increasing set of restrictions on the allocations. Table 3 reports three

hedging portfolios. The first portfolio refers to an unrestricted allocation, while the second

reports an allocation in which investment in equity is not allowed (wxr = 0). In both

cases the allocation strategy is a short position in T-bill and equity and a long position in

long-term bond and in the ALS.

Insert Table 3 about here

The third hedging portfolio is further restricted by forcing a zero allocation in the T-bill,

wrtb = 0, thus making the long-term bond the only available financial security available

to finance the annuity liability. In all three cases the volatility induced by the aggregate

longevity shock, as measured by the volatility of the aggregate longevity replication portfo-

lio, is close to 60 basis points in annual terms. This value remains almost constant for any

holding period with an essentially flat term structure of volatility. This value is slightly

higher but comparable to the 50 basis points which are usually considered as the market

standard for longevity risk (see Loeys et al. (2007)).
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The above measures of aggregate longevity risk and the values of its replication portfolios

can be revised on a yearly basis, at the highest revision frequency of the mortality rates.

By making ALHP tradable on a yearly basis, one could sell aggregate longevity protection

without incurring the liquidity problem of long duration securities.

According to Campbell (1996), an intertemporal utility-maximizing agent will opti-

mally demand to invest or sell the hedging portfolio for aggregate longevity, if the state

variable qkt forecasts changes in financial or human capital. The empirical estimation of the

extended VAR shows that the aggregate longevity shock indeed predicts price changes in

annuity prices and in long-term bonds, and supports the hypothesis of existence of non-zero

potential demand for ALS. While a complete discussion of the demand for longevity-linked

securities requires a structural equilibrium framework as in, for example, the model of

Cocco and Gomes (2012), in the next section we estimate the size of the compensation for

bearing longevity risk assuming that the set of investment opportunities also includes the

ALS.

VI. Pricing Longevity Risk

Milevsky, Promislow and Young (2005) propose to use the notion of Sharpe Ratio as

an actuarial measure of aggregate longevity risk compensation. While the Sharpe Ratio of

an investment is determined by the ratio between the expected return from the investment

in excess to a benchmark security (usually the T-bill) and the expected volatility, in actu-

arial science the Sharpe Ratio determines the excess markup per unit of volatility that an

aggregate longevity protection seller would charge to the protection buyer.

The discussion of the previous subsections suggests the possibility of using the informa-
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tion conveyed by the VAR dynamic model in order to estimate a longevity risk compensa-

tion. It is easy to understand that within our framework the Sharpe Ratio of the ALHP

is a reliable measure of such compensation. Note that by definition the ALHP is a zero

investment portfolio, as:

wALHP =
[
wALHP
xrtb,t , w

ALHP
xr,t , wALHP

xb,t , wALHP
x∆p,t

]
, wALHP·ι = 0,

and that the corresponding return can be split as the differential between the return of

a long position in financial securities and a short position in the ALS liability. Hence,

the ratio between the expected differential return and its risk provides a properly-defined

Sharpe Ratio. Moreover, different from previous approaches, our estimation procedure

identifies a dynamic compensation component whose evolution is maximally correlated

with longevity shocks as opposed to other intermediation margins, which are not.

Conditional expectations of risks and returns may substantially differ from uncondi-

tional ones, and therefore the conditional Sharpe Ratios depend on the holding period τ

and generate a term structure. This term structure depends on the initial level of the

VAR state variables corresponding to the current level of financial returns and the current

level of predictors. Over a horizon τ the Sharpe Ratio is the ratio between the τ -period

expected excess simple return and the τ -period standard deviation. Hence, recalling that

the extended VAR(1) models logarithmic returns we have:

SRτ,rt =
Exτ,rt
Stdτ,rt

,

The relative compensation of different securities as measured by the Conditional Sharpe
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Ratios depends on the horizon and on the state of the economy. When the holding period

goes to infinity (τ → ∞) the Sharpe Ratio SRτ,rt for a generic portfolio w converges to a

limit SR∞:11

SR∞ =
Ex∞
Std∞

,(9)

Ex∞ = lim
τ→+∞

{
Et,zt

[
1

τ

τ∑
k=1

w · rt+k

]
+

Std2
τ,rt (w)

2τ

}
,

Std∞ = lim
τ→+∞

√√√√Vart,rt

[
τ∑
k=1

w· (rt+k + r0,t+kι)

]
/τ ,

As shown in the Appendix, convergence of the SRτ,rt to SR∞ does occur at very long hori-

zons, but the limiting procedure is necessary in order to produce a bona fide unconditional

measure of expected performance consistent with the predictability patterns we have doc-

umented. Table 4 reports the estimation of long-term Sharpe Ratios for all the financial

securities included in the extended VAR(1): an equity index, a rolling position in long-term

bonds and the ALS. As expected, the Sharpe Ratio of the ALS security is negative, as its

performance is lower than that of benchmark risk free security, the T-Bill. On the other

hand, the low level of the period variance implies that the unconditional level of the ALS

Sharpe ratio is as high as SRALS
∞ = (−) 0.43, indicating the potential usefulness of this

synthetic security as a “liability” offering a good potential reward to investors seeking new

11These quantities can be easily computed using the following expressions of the long run mean and

covariance:

µ∞ = (I−Φ1)
−1

Φ0

Σ∞ = (I−Φ1)
−1

Φ1 (I−Φ1)
−T
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diversification strategies. However, as this liability is financed by a short-term T-Bill, and

the maturity mismatch is known to increase interest rate risk variations, the high value of

the Sharpe Ratio can be misleading.

Insert Table 4 about here

A similar problem arises when measuring the Sharpe Ratio of the ALHP, the measure

of aggregate longevity risk premium. The ALHP can be split in a short position in a

ALS security and a long position in a portfolio of traded financial securities, thus making

the Sharpe Ratio dependent on the composition of the portfolio used to finance the short

position.

Table 5 reports the Sharpe measure of aggregate longevity risk compensation for the

three alternative allocations defined in Table 3: the unrestricted one wALHP Unr, the one

excluding allocation to equity, wALHP 1, and the one where the ALS stochastic liability

can be hedged using only long-term bonds wALHP 2. As the Table 3 shows, Sharpe Ratios

decrease with increasing restrictions. Notice that the opposite of the unrestricted allocation

can well be interpreted as a feasible investment policy for an asset management company

that is using a leverage policy similar to the one adopted by Berkshire Hathaway. In this

case the optimal allocation corresponds to assume an insurance liability that is selling

longevity risk protection to finance a long position in equity and bond markets. 12 The

Sharpe Ratio value of 0.50 for this strategy witnesses the benefits that can be achieved

using such a form of optimal asset and liability management policy and confirms that this

12As of february 5 2013, Berkshire Hathaway announced a deal to reinsure the risks associated with $4

billion of future claims for two of health insurer Cigna Corp’s run-off variable annuity businesses.
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allocation strategy is one of the ingredients that contributed to the increase in Berkshire

performance up to the 0.66 Sharpe ratio computed in Frazzini et al. (2013).

Insert Table 5 about here

In fact, this anomalous performance sharply disappears when the allocation used to

hedge the stochastic liability induced by the short position in the ALS are constrained.

The Sharpe Ratio is the lowest if the investor is allowed to hedge using long-term bonds,

the security which is typically held in the reserves of insurance companies. In fact, the

hedging portfolio wALHP 2 using only long-term bonds is safer (but less profitable) than

wALHP 1 that also uses T-bills, as its duration matches that of the stochastic liability and

thus has an identical response to (small) interest rate fluctuations.

In conclusion, the actuarial longevity premium estimate consistent with a prudent hedg-

ing policy is given by SRALHP 2
∞ = 0.33. Its value is not far from the conventional level 0.25

used in the actuarial pricing of longevity products as discussed in Loeys et al. (2007). This

estimation is expected to overestimate the potential Sharpe Ratio from longevity liability,

as shorting costs are not explicitly accounted for in this analysis. In addition the adverse

selection effect is also expected to play a role here: the mortality rates of annuitants are

known to be significantly smaller from those of average population (see Poterba (2001)

and Mitchell et al. (1999)). Given the scarcity of data on prices of traded longevity-linked

securities, the same problems affect virtually any empirical measure of longevity risk com-

pensation.

It is possible to draw some conclusion on the robustness of the performance of a portfolio

like wALHP Unr with respect to exogenous liquidity shocks, thanks to the analysis of Koijen
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and Yogo (2014) on the dynamics of annuity prices during the recent financial crisis period

2008-2009. They prove that during the financial crisis, life insurers sold long-term policies

at deep discounts relative to their actuarial value and that this discount was supply driven.

The average markup was as low as -19 percent for annuities despite the fact that est rates

were falling. In fact, insurance companies were trying to sell more annuities in the attempt

to increase statutory capital i.e., assets relative to accounting liabilities. By selling new

policies, life insurers were able to raise capital because their reserve valuation was more

aggressive than mark to market during the financial crisis. In a way, life insurance policies

sold directly to households were used by insurance companies as a source of short term

funding when traded assets like equity and bonds were hit by financial markets’ illiquidity.

On the other hand, longevity risk is poorly correlated with market risk and short-term

volatility of longevity shocks is extremely low, thus liquidity was provided by annuities at

the expense of a rise in longevity risk exposure, having a negligible impact over the short

term. In other terms, diversification benefits created by the possibility to use longevity

liabilities to finance financial market investment seem to be robust to exogenous liquidity

shocks.

From a normative point of view these considerations indicate a further indirect motiva-

tion to promote the integration between financial and actuarial markets: their development

would drive a more transparent and precise assessment of the price for aggregate longevity

risk. Among other benefits, it is worth mentioning that this assessment can certainly re-

duce the dangerous lack of awareness regarding the public and private costs deriving from

generalized longevity increase.
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VII. Conclusions

Our analysis shows that integration between insurance and financial markets is a promis-

ing direction to improve the efficiency of longevity risk-sharing. We believe that our results

uncover some critical issues to improve longevity risk securitization. First, the long-term

nature of the longevity risk requires an accurate analysis of the term structure of the risk re-

turn trade-offs generated by including a longevity-linked security in the set of investments.

Second, a potentially large number of short-term investors would be willing to increase their

exposure to longevity risk without increasing their investment horizon. This requires the

organization of a maturity transformation activity by financial intermediaries that seems to

be a crucial step in increasing the interest of the market for longevity-linked securities, as

well as their liquidity. Finally, an integrated market for insurance and financial contracts

with a publicly-traded longevity index would also imply a more transparent and efficient

pricing of life annuities with a direct benefit to annuity subscribers.
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Figures and Tables

rtb xr xb x∆pr y d− p spr qk
Mean 0.027 0.056 0.0046 −0.027 5 0.056 −3.493 0.004 0.00(4)

Std Dev 0.052 0.160 0.108 0.057 0.031 0.411 0.014 0.041
Sharpe Ratio - 0.353 0.04 259 3 −0.482 46 - - - -

Summary Statistics.

Table 1: Mean returns is computed including the Jensen correction term, thus are computed as µ+ 0.5σ2.

Sharpe Ratio is computed as the ratio between Mean and Std Dev. Note: rtb = ex post real T-bill rate,

xr = excess stock return, xb = excess bond return, (d− p) = log dividend-price ratio, y = nominal T-bill

yield, spr = yield spread.
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rtbt xrt xbt x∆prt yt (d− p)t sprt (qk)t R2 adjR2

(t) (t) (t) (t) (t) (t) (t) (t)
rtbt+1 0.477 0.007 -0.106 0.074 0.590 -0.010 -0.680 -0.016 0.475 0.389

(3.265) (0.203) (-1.753) (0.640) (2.534) (-0.568) (-1.452) (-0.116)
xrt+1 0.190 0.048 0.131 0.929 -0.215 0.154 -0.892 -0.236 0.167 0.031

(0.388) (0.363) (0.679) (1.660) (-0.225) (2.423) (-0.462) (-0.372)
xbt+1 0.917 -0.116 -0.502 0.116 0.267 -0.054 4.362 0.588 0.562 0.491

(4.121) (-1.972) (-4.311) (0.370) (0.550) (-1.921) (4.203) (2.721)
x∆prt+1 0.531 -0.099 0.057 -0.188 -1.146 -0.034 -0.446 0.271 0.516 0.437

(4.294) (-2.228) (0.970) (-0.968) (-3.950) (-1.871) (-0.675) (2.199)
yt+1 -0.204 0.025 0.038 -0.046 0.940 0.007 0.286 -0.064 0.794 0.761

(-3.702) (2.477) (1.702) (-0.841) (9.253) (1.896) (1.315) (-1.728)
(d− p)t+1 -0.812 0.149 -0.081 -0.898 -0.038 0.885 2.475 0.148 0.845 0.819

(-1.392) (0.808) (-0.363) (-1.504) (-0.035) (13.163) (1.141) (0.221)
sprt+1 0.104 -0.017 0.014 0.048 0.036 -0.002 0.339 0.011 0.456 0.367

(2.452) (-1.775) (1.040) (1.069) (0.466) (-0.585) (2.076) (0.404)
(qk)t+1 -0.113 -0.051 0.000 -0.059 -0.008 -0.009 0.373 0.747 0.575 0.506

(-1.341) (-1.671) (0.002) (-0.617) (-0.034) (-1.172) (1.292) (6.625)

Cross-Correlations of Residuals
rtb xr xb ∆pr y (d− p) spr (qk)

rtb 3.763 0.206 0.117 0.192 -0.298 -0.234 0.318 -0.104
xr - 14.584 0.040 -0.063 -0.248 -0.970 0.295 -0.118
xb - - 7.184 0.176 -0.620 -0.089 0.132 0.014

∆pr - - - 3.927 -0.547 0.022 0.583 0.044
y - - - - 1.368 0.262 -0.843 0.041

(d− p) - - - - - 15.768 -0.277 0.098
spr - - - - - - 1.047 -0.047
(qk) - - - - - - - 2.617

VAR(1) - Matrix Φ1 - Yearly Sample 1953-2010. Annuities

Table 2: VAR(1) coefficients with relative t-statistics and Cross-Correlations of Residuals. Note: rtbt =

ex post real T-Bill rate, xrt = excess stock return, xbt = excess bond return, x∆pt = log difference on

annuities premium (d − p)t = log dividend-price ratio, yt = nominal T-bill yield, sprt = yield spread, qk

= aggregate longevity shock.

HedgingPortfolio wxr wrtb wxb wx∆pr

Unconstrained -0.042 -0.014 0.009 0.047
Constrained 1 wxr = 0 0 -0.062 0.004 0.058
Constrained 2 wrtb = wxr = 0 0 0 -0.059 0.059

Table 3: Optimal Allocation for Aggregate Longevity Hedging Portfolio under different constraints on the

set of financial securities included in the hedging portfolio.

40



SREquity
∞ SRLongBond

∞ SRALS
∞

0.429 0.0323 (-) 0.437

Table 4: Long term Sharpe Ratios for securities included in the Extended VAR. Values are computed as

illustrated in eq.9.

SRUnc
∞ SRCons 1

∞
Cons 2
∞

(-) 0.504 (-) 0.421 (-) 0.333

Table 5: Long term Sharpe Ratios for Aggregate Longevity Hedging Portfolios. Values are computed as

illustrated in eq.9.
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Figure 1: Contributions to the qkt shock: time series of aggregate vs sum of cohort-specific innovations as

defined in eq.(6.)
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Figure 2: Time series of historical (real) logarithmic price changes (dashed line) vs the replication as

operated by the VAR dynamic model.
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Figure 3: Term structure of risks for the securities included in the Extended VAR model.
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Figure 4: Term Structure of correlations between financial securities and the Annuity-Linked Security.
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Figure 5: Term structure of allocations forming the GMV portfolio at different horizons.
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Figure 6: Term structure of risks for an allocation in T-Bill (continuous line), in the GMV portfolio

restricted to financial securities (dashed line), in the GMV portfolio including also the Annuity-Linked

Security.
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Figure 7: Term structure of the efficient allocation with target expected return of 10%.
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